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34. Antiderivative

34.1. Introduction

Instead of starting with a function and asking what its derivative is, we turn things around
in this section:

� Find a function F that has derivative x4.

Since we know that the derivative of a power of x reduces the power by one, we take as an
initial guess F (x) = x5. Check: F ′(x) = 5x4. Because of the factor of 5, this is not quite
what we wanted, but we now know how to adjust. Let F (x) = 1

5x
5. Check: F ′(x) = x4

(yes).

If F and f are functions and F ′(x) = f(x), then F is called an antiderivative of f .
For instance, F (x) = 1

5x
5 is an antiderivative of f(x) = x4. The relationship between

derivatives and antiderivatives can be represented schematically:

For instance,
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34.2. Indefinite integral

Let f(x) = 2x. The function F (x) = x2 is an antiderivative of f . But so is F (x) = x2 + 1,
and F (x) = x2 + 2. In fact, F (x) = x2 + C is an antiderivative of f for any constant C.
The graph of F (x) = x2 +C is the graph of F (x) = x2 shifted vertically by C units, so we
have the following picture:
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Each function pictured is an antiderivative of 2x, that is, each function has the same
derivative (= general slope function) 2x. This agrees with the observation that at any x
the tangents to the graphs are all parallel, which implies that their slopes are the same.

A question remains: Are the functions F (x) = x2 + C (C any real number) all of the
possible antiderivatives of f(x) = 2x? Since the graph of any antiderivative has to share
with the graphs drawn above the stated property of parallel tangent lines, it is reasonable
to expect that there can be no further antiderivatives. This is in fact, the case. The the
main step in the verification is the following result, which says roughly that the only way
a function can have a derivative that is constantly 0 is if it is a constant function (so that
its graph is a horizontal line).
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Function with zero derivative is constant. If f ′(x) = 0, then
f(x) = C for some constant C.

The theorem says that if f has general slope function 0 (that is, every tangent is horizontal),
then f must be a constant function (that is, its graph must be a horizontal line), and this
seems reasonable.

Here is the careful verification: Assume that f ′(x) = 0. Suppose f(x) is not constant.
Then f(a) 6= f(b) for some a 6= b. By the mean value theorem, there exists c between a
and b such that

f ′(c) =
f(b)− f(a)

b− a
.

But the expression on the right is nonzero since f(a) 6= f(b) so we have f ′(c) 6= 0, in
violation of our assumption that f ′(x) = 0 for all x. We conclude that f(x) is constant,
that is, f(x) = C for some constant C.

Two antiderivatives differ by constant. If F is any antiderivative
of f , then every antiderivative of f is of the form F (x) + C for some
constant C.

Here is the verification: Let F be an antiderivative of f and suppose that G is another
antiderivative of f . We have F ′(x) = f(x) and also G′(x) = f(x), so that F ′(x) = G′(x).
Let H(x) = G(x)−F (x). Then H ′(x) = G′(x)−F ′(x) = 0. By the previous theorem (with
H playing the role of f), H(x) = C for some constant C. Then G(x) = F (x) + H(x) =
F (x) + C, as claimed.
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The result just verified establishes the earlier claim that the functions F (x) = x2 + C (C
any real number) are the only antiderivatives of f(x) = 2x.

Indefinite integral. If f is a function and F is any antiderivative of
f , we write ∫

f(x) dx = F (x) + C (C, arbitrary constant)

and call it the (indefinite) integral of f .

For example, since x2 is an antiderivative of 2x, we have∫
2x dx = x2 + C.

Saying that C is an “arbitrary” constant, is saying that it can be any real number. So in
a sense, ∫

2x dx

simultaneously represents

x2 + 0, x2 + 1, x2 + 1
2 , . . . , x2+ any number

and these are precisely all of the possible antiderivatives of 2x (according to the previous
theorem). For this reason, the indefinite integral of f is often called the most general
antiderivative of f .
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The reason for the notation
∫
f(x) dx will be given later, but for now it can be regarded

as a Leibniz notation for the most general antiderivative of f . The function f(x) between
the symbols

∫
and dx is called the integrand. If an independent variable other than x is

used, then dx is changed accordingly. For instance, we would write
∫
t4 dt = 1

5 t
5 + C.

34.3. Integral rules

Any derivative rule gives rise to an integral rule (and conversely). For example,

d

dx
[sinx] = cosx ⇒

∫
cosx dx = sinx + C

d

dx
[tanx] = sec2 x ⇒

∫
sec2 x dx = tanx + C

d

dx
[ex] = ex ⇒

∫
ex dx = ex + C

d

dx
[xn] = nxn−1 ⇒

∫
nxn−1 dx = xn + C

The last integral rule is not very convenient; we would prefer to have a rule for the integral
of simply xn. Such a rule follows:

Power rule for integrals.∫
xn dx =

xn+1

n + 1
+ C (n 6= −1).
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In words, the integral of a power of x equals x to the one higher power over that higher
power, plus an arbitrary constant. For example,∫

x4 dx =
x5

5
+ C,

in agreement with what we found earlier using trial and error. The power rule is verified
(as is any integral rule) by checking the validity of the corresponding derivative rule:

d

dx

[
xn+1

n + 1

]
=

d

dx

[
1

n+1x
n+1
]

= xn,

as desired.

The power rule excludes the case n = −1 (as it must since this would produce a zero in
the denominator). The omitted case is neatly handled by an earlier derivative rule:

Integral of 1/x. ∫
x−1 dx = ln |x|+ C

This formula holds since
d

dx
[ln |x|] =

1

x
= x−1.

Constant multiple rule. For any constant c,∫
cf(x) dx = c

∫
f(x) dx
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Sum/difference rule.∫
(f(x)± g(x)) dx =

∫
f(x) dx±

∫
g(x) dx

34.3.1 Example Find

∫ (
5x3 + 7x2

)
dx.

Solution Using the sum/difference rule, the constant multiple rule, and the power rule,
we get ∫ (

5x3 + 7x2
)
dx =

∫
5x3 dx +

∫
7x2 dx

= 5

∫
x3 dx + 7

∫
x2 dx

= 5

(
x4

4
+ C1

)
+ 7

(
x3

3
+ C2

)
,

where we have used subscripts on the arbitrary constants since one cannot assume that the
constants are equal. After distributing and collecting terms, we get∫ (

5x3 + 7x2
)
dx = 5

(
x4

4

)
+ 7

(
x3

3

)
+ (5C1 + 7C2) =

5x4

4
+

7x3

3
+ C,

where C = 5C1 + 7C2. As C1 and C2 range through all real numbers, C ranges through
all real numbers as well. Therefore, we can forget about C1 and C2 and just regard C
as an arbitrary constant. In short, one can apply the sum rule, the difference rule, and
the constant multiple rule, ignoring any arbitrary constants, provided a single arbitrary
constant is appended at the end.
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Now that we have seen in detail how the rules work, we can suppress steps.

34.3.2 Example Find

∫ (
7 + 4x3 − 5

x2
+

6

x
+ 2

3
√
x2

)
dx.

Solution We do some rewriting in order to use the power rule:∫
(7+4x3 − 5

x2
+

6

x
+ 2

3
√
x2

)
dx

=

∫ (
7x0 + 4x3 − 5x−2 + 6x−1 + 2x2/3

)
dx

= 7

(
x1

1

)
+ 4

(
x4

4

)
− 5

(
x−1

−1

)
+ 6 ln |x|+ 2

(
x5/3

5/3

)
+ C

= 7x + x4 +
5

x
+ 6 ln |x|+ 6

3
√
x5

5
+ C.

Verifying a stated integral formula is different from finding an integral. To verify an integral
formula, it is only necessary to verify the corresponding derivative formula:

34.3.3 Example Verify that∫ √
1− x2 dx = 1

2

(
x
√

1− x2 + sin−1 x
)

+ C.
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Solution We verify the corresponding derivative formula:

d

dx

[
1
2

(
x
√

1− x2 + sin−1 x
)]

=
1

2

(
1 ·
√

1− x2 + x · 12
(
1− x2

)−1/2
(−2x) +

1√
1− x2

)
=

1

2

(√
1− x2 − x2

√
1− x2

+
1√

1− x2

)
=

1

2

(
2− 2x2

√
1− x2

)
=
√

1− x2.

34.3.4 Example Find

∫ (
4ex + sinx− 8

x
+

3

1 + x2

)
dx.

Solution We use the sum/difference rule and the constant multiple rule, and then the
fact pointed out above that every derivative rule gives rise to a corresponding integral rule
(rewriting the second term in order to use the rule):∫

(4ex + sinx− 8

x
+

3

1 + x2

)
dx

= 4

∫
ex dx−

∫
(− sinx) dx− 8

∫
1

x
dx + 3

∫
1

1 + x2
dx

= 4ex − cosx− 8 ln |x|+ 3 tan−1 x + C.

(See 25 for a list of derivative rules.)
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34.4. Initial value problem

If f is an unknown function and we know only that it has derivative f ′(x) = 2x, then
we cannot hope to determine f precisely since there are infinitely many functions with
derivative 2x (namely, x2 + C for any constant C). However, if we also know the value of
f for some particular input, for instance f(2) = 5, then we can determine f precisely:

34.4.1 Example Find the function f given that f ′(x) = 2x and f(2) = 5.

Solution The equation f ′(x) = 2x says that the desired function f is an antiderivative of
2x, so

f(x) =

∫
2x dx = 2

(
x2

2

)
+ C = x2 + C,

that is, f(x) = x2 + C. Using the condition f(2) = 5, we get

5 =
↑

given

f(2) =
↑

evaluate

22 + C.

The preceding equations reveal that 5 = 4 + C, so that C = 1. Therefore, f(x) = x2 + 1.

Knowledge of the general slope function f ′(x) = 2x of the desired function f allowed us
to determine that f(x) = x2 + C. At that point we could tell that the graph of f had the
shape of the parabola y = x2, but there was an unknown vertical shift of C units that kept
us from completely determining f . The second condition, f(2) = 5, said that the graph of
f had to go through the point (2, 5), and from this we determined that the shift amount
had to be 1:
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The problem of finding a function given its derivative and its value for some particular
input is called an initial value problem. Many modeling problems in the sciences and
engineering are initial value problems.

34.4.2 Example A car traveling northeast on I-85 (assumed to be straight) has ve-
locity at time t hr given by v(t) = 20t + 55 mph. Given that the car is at Lagrange after
one hour, find where the car began its trip.

Solution Let f(t) be the car’s position, relative to Lagrange, at time t. Since velocity is the
rate at which position changes, we have v(t) = f ′(t), which says that f is an antiderivative
of v, so

f(t) =

∫
v(t) dt =

∫
(20t + 55) dt = 20

(
t2

2

)
+ 55t + C = 10t2 + 55t + C,
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that is, f(t) = 10t2 + 55t + C. Since the car is at Lagrange after one hour, its position at
time t = 1 is 0, that is, f(1) = 0. Therefore,

0 =
↑

given

f(1) =
↑

evaluate

10(1)2 + 55(1) + C.

The preceding equations reveal that 0 = 65 + C, so that C = −65. Therefore, f(t) =
10t2 + 55t− 65. The car began its trip at time t = 0, so its initial position was f(0) = −65.
In other words, the car was 65 miles southwest of Lagrange (and therefore around Tuskegee).

The information v(t) = 20t+ 55 tells us the car’s speedometer reading at any time t. From
this alone, we could not have hoped to determine the car’s initial position (one can imagine
cars at various places along I-85 always having identical speedometer readings). It was the
additional information that the car was at Lagrange after one hour that allowed for the
determination of its initial position (and, in fact, its position at any time).

In terms of the graph, the speedometer readings allowed us to determine that the position
function was f(t) = 10t2 + 55t + C, so we could tell that the graph had the shape of the
upturning parabola y = 10t2 + 55t but with an unknown vertical shift of C units. The
additional information told us that the graph had to go through the point (1, 0) and this
allowed for the determination of the shift amount.
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